NOMAD Biosensors Multiplex screening for GPCRs

Innoprot has developed a new biosensor technology (NOMAD) for screening compounds against GPCR targets in functional cell-based assays. Amongst NOMAD's many advantages, you can easily evaluate G-protein and β arrestin modulation in the same assay, hence allowing **biased activity studies**. Five NOMAD biosensors are available for detection of Ca2+, cAMP, DAG, RhoGTP or β -arrestin recruitment. Any combination of NOMAD biosensors can be co-expressed with the target GPCR, according to screening objectives. NOMAD assays are highly robust and well suited for high throughput screening (HTS) applications.

Key Features

- G-protein and β-arrestin signaling modulation can be measured in the same assay
- No need to label the target GPCR
- Direct measurement of Ca2+, cAMP, RhoGTP or DAG flux, or β-arrestin recruitment
- Assay have high Z' scores and low background
- Adapted to HTS (384 well plate format)
- Compound activity can be measured by either fluorescence or biosensor translocation
- Low running cost
 - No dyes or special reagents needed
 - Simple protocol and minimal hands-on time
 - Measure using standard lab equipment

Technology Access

Innoprot offers over 40 off-the-shelf NOMAD cell lines, and can also custom develop NOMAD cell lines as a service. NOMAD cell lines can be transferred to the client or used in contract research projects at Innoprot. Time to delivery of a new assay in 384 well plate-adapted format is typically about 3-4 months. Please contact us for more information –we would be pleased to discuss how NOMAD may help accelerate your research program.

How NOMAD works

Example of a cell expressing two Nomad biosensors (N1 and N2). Stimulation of the target GPCR triggers G protein and / or β -Arrestin-mediated signaling pathways. An increase in intracellular levels of 2nd messenger (choice of cAMP, RhoGTP, Ca2+ or DAG) causes N1 to internalize and emit green fluorescence. On the other hand, β -Arrestin recruitment followed by GPCR internalization causes N2 to internalize and emit red fluorescence. Modulation of the G protein and β -Arrestin signaling pathways by test compounds can thus be evaluated in a single assay.

Innoprot contact: innoprot@innoprot.com Parque Tenológico de Bizkaia, Edf. 502, Derio, Spain Tel: +34 944005355 | www.innoprot.com

NOMAD Biosensors Multiplex screening for GPCRs

Biased activity study - sample data

Measuring 6-Arrestin and Ca²⁺ -mediated signaling activity in a single assay: A cell line expressing Neurotensin Receptor 1 (NTSR1), a Nomad 6-Arrestin sensor (red) and a Nomad Ca²⁺ sensor (green) was stimulated with neurotensin. This led to an increase of similar magnitude in both 6-Arrestin and Ca²⁺ - mediated signaling activity. Panels A and B show unstimulated cells and cell stimulated with 1µM neurotensin, respectively. Calculated EC50 values agree well with the literature, and the measurements were robust as indicated by Z-scores of 0.84 and 0.9 for the 6-arrestin and Ca²⁺ assays respectively.

Off-the-shelf NOMAD cell lines

Sensor	GPCR	Sensor	GPCR		Sensor	GPCR
cAMP flux	ADORA2B	Ca2+ flux	BB2		Arrestin-Ca ⁺⁺	NTSR1
	ADRB2]	CCK1		Arrestin-Ca ⁺⁺	NK1R
	CRHR2		ССК2		Arrestin-Ca++	PAR2
	FSHR		M5		Arrestin-Ca ⁺⁺	ADRA1A
	GLP1R		NK1		Arrestin-Ca++	ADRA1B
	GLP2R		NK3	-	Arrestin-Ca++	CCKBR
	LHCGR	DAG flux	M5	-	Arrestin-Ca ⁺⁺ Arrestin-Ca ⁺⁺ Arrestin-Ca ⁺⁺ Arrestin-CAMP	BDKR2
	M4R			-		BUKKZ
	MCR3	b-Arrestin	NTSR1	_		GRPR
	PAC1R	recrutiment	NK1R			OXTR
	VIPR1	Multiplex	ENDRB			IHR
	VIPR2	Ca ⁺⁺ -AMP	NK2			LIIIV

Innoprot contact: innoprot@innoprot.com Parque Tenológico de Bizkaia, Edf. 502, Derio, Spain Tel: +34 944005355 | www.innoprot.com