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1. Abstract

We propose Automatic Relation-
aware Graph Network Proliferation 
(ARGNP) for efficiently searching 
GNNs with a relation-guided 
message passing mechanism. 
The experiments on six datasets for 
four graph learning tasks 
demonstrate that GNNs produced by 
our method are superior to the 
current state-of-the-art hand crafted 
and search-based GNNs.

4. Network Proliferation Search Paradigm
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2. Relation-aware GNN Search Space
node-learning operations
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B. Relation Search Space
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The proposed dual relation-aware graph search space comprises: 
1. Node-learning operations implement the anisotropic message aggregation 
under the guidance of relation features.
2. Relation-mining operations extract relational information hidden in each 
pair of edge-connected nodes. 
This realizes the organic combination of node learning and relation mining in 
message passing mechanism. 

The network proliferation is an iterative process, which consists of: 
1. Network division divides each feature vertex into two parts and constructs a 
series of local super-networks.  
2. Network differentiation aims to differentiate each local super-network into a 
specific sub-network. 
The spatial-temporal complexity is reduced from 𝑂(𝑛!) to 𝑂(𝑛).

5. Ablation Study on Search Paradigm

Figure 5. The best GNN architecture with the network size of 4 searched on the ModelNet40 dataset.

Table 2. Comparision with state-of-the-art architectures on the
ModelNet10 and ModelNet40 datasets at 3D point cloud recog-
nition task. L denotes the size of GNN architecture.

ModelNet10 ModelNet40

Architecture L E Metric Metric Params Search
(#) 2� (OA %) " (OA %) " (M) (Day)

3DmFV [6] / / 95.2 91.6 45.77 m�
PointNet++ [47] / / N/A 90.7 1.48 m�
PCNN [3] / / N/A 92.3 8.20 m�
PointCNN [35] / / N/A 92.2 0.60 m�
DGCNN [55] / / N/A 92.2 1.84 m�
KPConv [52] / / N/A 92.9 14.3 m�
SGAS [32] 9 X N/A 92.93±0.19 8.87 0.19

ARGNP 2 ⇥ 93.20±0.24 91.11±0.24 1.80 0.03
ARGNP 4 ⇥ 93.86±0.25 91.30±0.22 2.27 0.04
ARGNP 8 ⇥ 94.23±0.22 91.85±0.18 3.20 0.15

ARGNP 2 X 95.07±0.31 92.47±0.23 2.50 0.04
ARGNP 4 X 95.35±0.23 92.80±0.19 3.05 0.06
ARGNP 8 X 95.87±0.22 93.33±0.15 4.15 0.20

ent network size settings, relation learning can significantly
improve the capability of graph reasoning. Interestingly,
this improvement is also observed on the CLUSTER, CI-
FAR10, and ModelNet datasets which don’t have original
edge features. Taking the CLUSTER dataset as an exam-
ple, it aims at identifying the community clusters, where the
graphs represent the community networks. The edges play
a role in connecting two nodes and have no original mean-
ingful features. In this case, relation learning can mine hier-
archical relational information by extracting local structural
similarities between nodes. This can help distinguish be-
tween intra-community and extra-community connections
for learning better discriminative node features.

4.4. Ablation of Search Paradigm
To investigate the effectiveness of our Network Prolif-

eration Search Paradigm (NPSP), we conduct the ablation
experiments on ZINC dataset around network size, search
strategy, whether to use cell trick and whether to use NPSP.
We run 14 different experiments and report the results in Ta-
ble 3. We observe the following phenomena. First, the cell
trick improves the search efficiency but weakens the expres-
sive capability of graph search space. This results from its

Table 3. Performance of the relation-aware graph search space
under different settings. Cell is an indicator of whether to use
the cell trick. NPSP is an indicator of whether to use the network
proliferation search. OOM denotes out of memory.

ZINC

# Method L Search Cell NPSP Metric Params Search
(#) Strategy 2� 2� (MAE) # (M) (Day)

1 R-space 8 Random ⇥ ⇥ 0.303±0.058 0.27 0.
2 R-space 8 DARTS X ⇥ 0.160±0.005 0.28 0.17
3 R-space 8 DARTS ⇥ ⇥ 0.157±0.008 0.28 0.30
4 R-space 8 DARTS ⇥ X 0.150±0.006 0.29 0.08
5 R-space 8 SGAS X ⇥ 0.165±0.008 0.30 0.13
6 R-space 8 SGAS ⇥ ⇥ 0.161±0.008 0.30 0.25
7 R-space 8 SGAS ⇥ X 0.155±0.003 0.28 0.06

8 R-space 16 Random ⇥ ⇥ 0.185±0.024 0.51 0.
9 R-space 16 DARTS X ⇥ 0.144±0.004 0.57 0.38
10 R-space 16 DARTS ⇥ ⇥ N/A N/A OOM
11 R-space 16 DARTS ⇥ X 0.139±0.005 0.56 0.24
12 R-space 16 SGAS X ⇥ 0.140±0.003 0.60 0.32
13 R-space 16 SGAS ⇥ ⇥ N/A N/A OOM
14 R-space 16 SGAS ⇥ X 0.136±0.002 0.52 0.21

original assumption where the GNN architecture is a stack
of the same building cells that narrows our relation-aware
graph search space. Therefore, the search strategy with
the cell trick performs worse than that without it, which
is demonstrated by the contrast between exp 2 and exp 3,
exp 5 and exp 6. Second, our NPSP can both significantly
improves the search efficiency and search effect with differ-
ent search strategies. The performance improvement bene-
fits from that the NPSP can alleviate the subnet interference
and mitigate the shrink of search space by breaking away
from the cell assumption. The efficiency improvement lies
in that NPSP shifts the training object from global supernet
to sequential local supernets. They are supported by exp 4,
7, 11, and 14, where NPSP achieves the best performance
with less time cost under all the experimental settings.

4.5. Visualizing Hierarchical Features

To better demonstrate the effectiveness of the relation
learning, we provide relation and node features visualiza-
tion on ModelNet40 dataset. During the inference, we feed
forward one 3D pointcloud object into the network with
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1. The cell-sharing trick improves 
the search efficiency but seriously 
narrows the original search space 
and limits the final searched GNN’s 
capability. 

2. Our network proliferation search 
paradigm can both improves the 
search effect and search efficiency. 

3. The proposed search paradigm 
works well with different search 
strategy (such as DARTS and SGAS). a. L denotes the size of the searched network. 

b. Cell indicates whether to use cell-sharing trick.
c. NPSP indicates whether to use the network proliferation 

search paradigm. 

6. Task-based Layer

The Global Node Feature:
𝑉! = 𝜎(𝐵𝑁([𝑉" ∥ ⋯ ∥ 𝑉#]))

The Global Relation Feature:
𝐸! = 𝜎(𝐵𝑁([𝐸" ∥ ⋯ ∥ 𝐸#]))

The Global Graph Representation: 
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3. Ablation Study on Search Space
Table 1. Comparison with state-of-the-art architectures on the CLUSTER, ZINC, CIFAR10 and TSP datasets. m� denotes the
architecture is mannually designed. The indicator E denotes whether the architecture can learn edge feature. The ARGNP without edge
feature means that the relation space is removed from relation-aware graph search space. Note that mean and standard deviation are
computed across 4 independently searched GNN architectures.

Node Level Graph Level Edge Level

Architecture CLUSTER ZINC CIFAR10 TSP

E Metric Params Search Metric Params Search Metric Params Search Metric Params Search
2� (AA %) " (M) (day) (MAE) # (M) (day) (OA %) " (M) (day) (F1) " (M) (day)

GCN [29] ⇥ 68.50±0.98 0.50 m� 0.367±0.011 0.50 m� 56.34±0.38 0.10 m� 0.630±0.001 0.10 m�
GIN [59] ⇥ 64.72±1.55 0.52 m� 0.526±0.051 0.51 m� 55.26±1.53 0.10 m� 0.656±0.003 0.10 m�
GraphSage [21] ⇥ 63.84±0.11 0.50 m� 0.398±0.002 0.51 m� 65.77±0.31 0.10 m� 0.665±0.003 0.10 m�
GAT [53] ⇥ 70.59±0.45 0.53 m� 0.384±0.007 0.53 m� 64.22±0.46 0.11 m� 0.671±0.002 0.10 m�
GatedGCN [9] X 76.08±0.34 0.50 m� 0.214±0.013 0.51 m� 67.31±0.31 0.10 m� 0.838±0.002 0.53 m�
PNA [15] ⇥ N/A N/A N/A 0.320±0.032 0.39 m� 70.46±0.44 0.11 m� N/A N/A N/A
PNA [15] X N/A N/A N/A 0.188±0.004 0.39 m� 70.47±0.72 0.11 m� N/A N/A N/A
DGN [5] ⇥ N/A N/A N/A 0.219±0.010 0.39 m� 72.70±0.54 0.11 m� N/A N/A N/A
DGN [5] X N/A N/A N/A 0.168±0.003 0.39 m� 72.84±0.42 0.11 m� N/A N/A N/A
GNAS-MP [12] ⇥ 74.77±0.15 1.61 0.80 0.242±0.005 1.20 0.40 70.10±0.44 0.43 3.20 0.742±0.002 1.20 2.10

ARGNP (2) ⇥ 61.61±0.27 0.07 0.04 0.430±0.003 0.09 0.01 66.55±0.13 0.10 0.11 0.655±0.003 0.09 0.05
ARGNP (4) ⇥ 64.06±0.45 0.14 0.07 0.303±0.013 0.14 0.01 66.65±0.39 0.18 0.14 0.668±0.003 0.17 0.06
ARGNP (8) ⇥ 68.73±0.12 0.25 0.20 0.239±0.009 0.27 0.02 67.37±0.32 0.33 0.48 0.674±0.002 0.29 0.21
ARGNP (16) ⇥ 71.92±0.29 0.53 0.71 0.221±0.004 0.51 0.06 67.10±0.51 0.58 1.77 0.684±0.002 0.56 0.76

ARGNP (2) X 64.99±0.31 0.08 0.06 0.318±0.009 0.08 0.01 69.14±0.30 0.10 0.17 0.773±0.001 0.08 0.08
ARGNP (4) X 74.75±0.25 0.15 0.09 0.197±0.006 0.15 0.01 71.83±0.32 0.17 0.23 0.821±0.001 0.14 0.10
ARGNP (8) X 76.32±0.03 0.29 0.31 0.155±0.003 0.28 0.04 73.72±0.32 0.33 0.84 0.841±0.001 0.30 0.39
ARGNP (16) X 77.35±0.05 0.52 1.10 0.136±0.002 0.52 0.15 73.90±0.15 0.64 2.95 0.855±0.001 0.62 1.23

decay 3 ⇥ 10�4. We use Adam [28] as the optimizer for
↵, with initial learning rate ⌘↵ = 3 ⇥ 10�4, momentum
� = (0.5, 0.999) and weight decay 10�3.
Training settings. We follow all the training settings (data
splits, optimizer, metrics, etc.) in work [12, 17]. Specifi-
cally, we adopt Adam [28] with the same learning rate decay
for all runs. The learning rate is initialized with 10�3, which
is reduced by half if the validation loss stops decreasing af-
ter 20 epochs. The weight decay is set to 0. The dropout is
set to 0.5 to alleviate the overfitting. Our architectures are
all trained for 400 epochs with a batch size of 32. We report
the mean and standard deviation of the metric on the test
dataset of 4 discovered architectures. These experiments
are run on a single NVIDIA GeForce RTX 3090 GPU.

4.2. Results and Analysis
In Table 1 and Table 2, we compare our ARGNP with

the state-of-the-art hand-crafted and search-based GNN ar-
chitectures on the CLUSTER, ZINC, CIFAR10, TSP, Mod-
elNet10, and ModelNet40 datasets. The evaluation metric
is the average accuracy (AA) for CLUSTER, mean abso-
lute error (MAE) for ZINC, F1-score (F1) for TSP. For CI-
FAR10, ModelNet10, and ModelNet40, we use the over-
all accuracy (OA) as the evaluation metric. To make a
fair comparison, we also report the architecture parame-
ters, the search cost, and the mean and standard deviation
of all the metrics. We can see that, on all the six datasets
for four classical graph learning tasks, the GNN architec-

tures discovered by our ARGNP surpass the state-of-the-
art architectures by a large margin in terms of both mean
and standard deviation. Compared with the state-of-the-
art search-based method GNAS-MP [12], our searched ar-
chitecture can easily achieve better performance with only
1
10 ⇠

1
4 parameters. This benefits from that the relation-

aware graph search space can mine hierarchical relation
information (such as local structural similarity) to guide
anisotropic message passing. Moreover, the network pro-
liferation search paradigm can efficiently and effectively
explore the proposed search space. We visualize the best-
performed GNN architecture with the size of 4 in Figure 5,
which is searched on the ModelNet40 dataset. Other exam-
ples are provided in the supplementary material.

4.3. Ablation of Search Space
We study the influence of the relation search space in

our proposed relation-aware graph search. First, we con-
struct a search space variant by removing the relation search
space. Then we perform GNN architecture search on this
variant using the network proliferation search paradigm and
obtain a sequence of GNN architectures with the size of
{2, 4, 8, 16}. These GNN architectures are evaluated on six
datasets. For a fair comparison, we increase the dimension
of the node features to keep the architectural parameters
comparable. As shown in Table 1 and Table 2, the best
performance of the search space variant without relation
learning descends by a large margin. Under all the differ-
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CLUSTER: 77.35%; CIFAR10: 73.90%; ZINC-100k: 0.136; TSP: 0.855

1. Mining relational 
information can 
significantly 
improve the GNN’s 
reasoning ability. 

2. Relation-aware 
GNN search space 
achieves higher 
score with fewer 
parameters.

Different from traditional GNNs whose 
global graph representation is only 
constructed on the readout of node features. 
Our method explicitly models relational 
information, so it naturally constructs global 
graph representation with both node and 
relation features. 


